Privacy Policy

Table of Contents

Who we are

Our website address is: https://stargazingtelescope.com

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you have an account and you log in to this site, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select “Remember Me”, your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

About Refracting Telescope

A refractor telescope, also known as a refracting telescope, is a type of telescope that uses a lens to focus light. It was one of the first types of telescopes invented and is still used by astronomers today. The lens at the front of the telescope is called the objective lens, and it is responsible for gathering light and bending it so that it converges to a point of focus at the back of the telescope, where an eyepiece is located to magnify the image formed by the objective lens.

The Optical Design

The optical design of a refractor telescope is relatively simple. The objective lens is a convex lens, meaning that it is thicker in the middle than at the edges. When light passes through the lens, it is refracted, or bent, by an amount that depends on the angle at which it hits the lens and the properties of the glass. The refracted light converges at a point called the focus, which is located a certain distance behind the lens. The distance between the lens and the focus is called the focal length, and it is an important characteristic of the objective lens.

The eyepiece is a small lens that is placed near the focus of the objective lens. Its job is to magnify the image formed by the objective lens so that it can be viewed by the observer. The magnification of the telescope is determined by the ratio of the focal lengths of the objective lens and the eyepiece. For example, if the focal length of the objective lens is 1000mm and the focal length of the eyepiece is 10mm, the magnification of the telescope would be 100x (1000/10 = 100).

In addition to the objective lens and eyepiece, refractor telescopes typically have a few other components to help with focusing and alignment. A diagonal mirror is often used to redirect the light from the objective lens to a more comfortable viewing angle. A focuser is used to move the eyepiece closer or farther away from the objective lens to achieve a sharp focus. Finally, a mount is used to support the telescope and allow it to be pointed at different objects in the sky.

The Advantages of Refracting Telescope

One advantage of refractor telescopes is that they produce high-quality images with good contrast and minimal chromatic aberration. Chromatic aberration is a phenomenon where different colors of light are refracted differently by the lens, causing a rainbow-like effect around bright objects in the image. This can be a problem with some types of lenses, but it is less of an issue with refractor telescopes because they use a single lens to focus the light.

Another advantage of refractor telescopes is that they are relatively low-maintenance. Because the objective lens is sealed inside the telescope tube, it is protected from dust and other debris. This means that the lens does not need to be cleaned as often as the mirrors in a reflecting telescope. However, it is still important to keep the lens clean and free of fingerprints or other smudges, which can degrade the image quality.

Overall, a refractor telescope is a simple but powerful tool for observing the night sky. With a well-made objective lens and a high-quality eyepiece, it is possible to see many of the wonders of the universe, from the craters of the Moon to the rings of Saturn and beyond. Whether you are a seasoned astronomer or a curious beginner, a refractor telescope is a great way to explore the cosmos and deepen your appreciation for the beauty and complexity of our universe.